Geomechanical Assessment of Fractured Cambrian-Ordovician Reservoirs in Northern Appalachian basin for Carbon Storage

O. Babarinde, J. Sminchak, N. Gupta, J. Miller and J. Gerst. - Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201. babarinde@battelle.org; (614) 424-4872

Abstract

The Cambrian-Ordovician age Conasauga and Knox Groups constitute a regional succession of carbonates punctuated by brief periods of clastic deposition. Diagenesis and a history of multiple orogenic events contributed in the development and distribution of a complex fracture system. Understanding the distribution of the developed fracture network in the region is of significance in screening location for CO_2 storage. In this study, we seek to understand natural fracture distribution on the western flank of northern Appalachian basin and the implication for injecting CO_2 into the fractured reservoirs. Ten wells with resistivity and acoustic image log were selected for this study. Natural

fracture observations were interpreted on the newly acquired image logs collected at multiple well locations ranging in depth from 730 to 4150 meters. Results of observations were used to study fracture intensity variation from west to east of the studied area. Using the structural parameters of the observed natural fractures and well bore failures observed from image logs, we assessed the likelihood of observed fractures to slip under current stress conditions using 3D Mohr diagram for critically-stressed fracture analysis. Multiple scenarios were modelled for injecting CO₂ at varying pressure to understand slip likelihood Study on fracture intensity variation shows formations on the western part of the studied area to be more fractured and may be more suitable for CO₂ storage. Critically-stressed fracture analysis shows the natural fractures are not critically stressed in the current state but some of these fractures have the potential to slip at elevated pressures.

Objectives

In this study, the aim was to use resistivity and acoustic image log data to categorize observed drilling induced and natural fractures within the Cambrian-Ordovician carbonate reservoirs and evaluate the spatial distribution of natural fractures within individual geologic units.

Open natural fractures are sometimes present in carbonate reservoirs and could act as storage space for CO₂ as well as good fluid conduits that could enhance the injectivity of CO₂ into storage aquifers. While the presence of natural fractures in carbonate reservoirs are beneficial for increasing injectivity and storage volume, there are other underlying concerns related to what role fracture systems play concerning induced seismicity. Using 3D Mohr circle diagram, we assess the likelihood of observed natural fractures to slip at varying pore pressure conditions.

Study area

The study area shown in figure 1 is located on the western flank of northern Appalachian basin within central to eastern Ohio.

Figure 1: Map of Appalachian basin region showing structural elements (Drawn and Modified after U.S Geological Survey (USGS) Map, 2012)

The Cambrian-Ordovician strata on the western flank of the basin dips gently eastwards into the Rome Trough with increasing thickness of the Beekmantown strata. Figure 2 shows the Knox unconformity surface and the increasing thickness to the east.

Figure 2:WSW to ENE (A-A') cross section of the study area showing change in sediment thickness in an eastward direction (Note; Knox unconformity surface was used as datum)

reservoir.

area.

For more information on the information presented here, please contact:

Ola Babarinde Battelle Exploration and Production Services/Carbon Management

> 505 King Ave., Columbus, OH. 43201 Tel: 614-424-4872

Email: babarinde@battelle.org

2015 CARBON STORAGE R&D PROJECT REVIEW MEETING PITTSBURG, PA - AUGUST 18-20, 2015

Stress magnitudes

Determination of the stress magnitudes (S_V, S_{Hmax} and S_{hmin}) acting at depth is important in understanding the prevailing stress regime in the region.

Pore pressure (Pp) data was derived from pressure measurement in the borehole (figure 12).

 S_v was determined from integrating density log. (figure 13).

$$S_v = \int_0^z \rho(z) g dz$$

Magnitude of S_{hmin} is normally determined from Leak-Off test (LOT). While figure 14, shows how maximum horizontal stress magnitude is constrained using stress polygon approach.

gradient

Critically stressed fracture analysis

Horizontal stress magnitudes derived in the work by Lucier, 2006 were used as estimates for critically stressed fracture analysis.

Figures 15 shows an example of a 3D Mohr circle analysis on fractures observed in a sampled well. Result shows that these fractures are stable in their original state but have the tendency to slip at elevated pressure during CO_2 injection. This analysis could be useful in CO₂ site screening, characterization, operation and monitoring.

Figure 15: 3D Mohr Circle Analysis

Conclusions

- Western part of the studied area appears to be more fractured than the eastern part
- Dominant northeast southwest trending fractures are observed in the studied region High percentage of fractures tend to strike sub-parallel to the axis of S_{Hmax}
- Fractures are not stressed in their original state but have the tendency to become critically stressed at elevated pressure.
- Detailed management of pressure during injection could mitigate the risk of induced seismicity

References

- . Battelle Memorial Institute, 2013. Conducting research to better define the sequestration options in eastern Ohio and the Appalachian Basin: Final report OCDO Grant/Agreement CDO/D-10-7a, 131 pp.
- 2. Engelder, T., 1993. Stress regimes in the lithosphere: Princeton University Press, 457p. 3. Lucier, A., Zoback, M., Gupta, N., and Ramakrishnan, T.S., 2006. Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio River Valley region: Environmental Geosciences, V.13, No. 2, pp. 85-103
- . www.world-stress-map.org,2008, Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., The World Stress Map based on the database release 2008, equatorial scale 1:46,000,000, Commission for the Geological Map of the World, Paris, doi:10.1594/GFZ.WSM.Map2009, 2009
- 5. Zoback, M.D., 2007. Reservoir Geomechanics: Cambridge University Press, 505 p.

Acknowledgements

This project was supported by U.S. Department of Energy's National Energy Technology Laboratory(Award DE-FE0023330) and Ohio Development Services Agency's Coal Development Program(Grant CDO-D-14-16). Special thanks to Samin Raziperchikolaee and Mark Kelley for their contributions.

Normal Faulting S_v >S_{Hmax}>S_{hmin} where S_=S1, Sterr=S2, Sterr= Strike-Slip Faulting S_{Hmax}>S_v>S_{hmin} where SHmax=S1, Sy=S2, Shmin=S3 Reverse Faulting S.....>S....>S. Figure 11: Different types of fault syster (Anderson Classification scheme) Polygon